
Strong Cryptography Armoured Computer Viruses Forbidding Code Analysis:
the Bradley Virus1

Major Eric Filiol
Army Signals Academy – Virology and Cryptology Laboratory2

About Author(s)
Eric Filiol is Head Scientist Officer of the Virology and Cryptology Laboratory.
Contact Details: c/o Ecole Supérieure et d’Application des Transmissions, Laboratoire de virologie
et de cryptologie , B.P. 18, 35998 Rennes, France, phone +33-2-99843609, fax +33-2-99843609,
e-mail efiliol@esat.terre.defense.gouv.fr

Keywords
Encryption, viral encryption, antiviral techniques, code disassembly, key management.

Reference

Reference to this paper should be made as follows:

Filiol E. (May 2005). Strong Cryptography Armoured Computer Viruses Forbidding Code Analysis:
the Bradley Virus. In Turner, Paul & Broucek, Vlasti (eds.), EICAR Best Paper Proceedings, CD-
ISBN87-987271-7-6, pp.216-227.

1 This paper was presented at the EICAR2005 annual conference held in St.Juliens/Valletta (Malta), April30 May3,
2005 and published in the Best Paper Proceedings CD Turner, Paul & Broucek, Vlasti (eds.). ISBN87-987271-7-6

2 This paper may be downloaded at: WebUrbBrief http://papers.weburb.org/frame.php?loc=archive/00000136/

216

Strong Cryptography Armoured Computer Viruses Forbidding Code Analysis:
the Bradley Virus

Abstract
Imagining what the nature of future viral attacks might look like is the key to successfully
protecting against them. This paper discusses how cryptography and key management techniques
may definitively checkmate antiviral analysis and mechanisms. We present a generic virus, denoted
Bradley which protects its code with a very secure, high speed symmetric encryption. Since the
main drawback of using encryption in that case lies on the existence of the secret key or
information about it within the viral code, we show how to bypass this limitation by using suitable
key management techniques. Finally, we show that the complexity of the Bradley code analysis is at
least as high as that of the cryptanalysis of its underlying encryption algorithm.

Introduction
Antiviral detection is directly based on the capability to have malware codes at one’s disposal and to
study them by disassembly means. Thus, viral databases can be updated and antiviral engines can be
upgraded.

A few malware writers try to make this task more difficult by implementing various techniques
which aim at delaying the knowledge and the understanding of their codes: obfuscating, rewriting,
encryption.... These codes are denoted armoured codes. The first and most famous one is probably
the Whale virus appeared in the early nineties. More recently, the MyDoom virus very naively tries
to complicate antiviral experts’ work by implementing basic encryption techniques. Up to now,
none of the known malware succeeded in preventing code analysis.

The main explanation for this failure lies on two facts:

 antiviral experts always manage to obtain a malware copy (infected file). As they are widely
disseminated, malware code samples (viruses, worms...) are always very easily available. This
comes from the fact that limited virulence3 is not a feature inherent to malicious codes.

 When present, techniques aiming at making code analysis more difficult are bound to fail. The
main reason is that the related problems (that is to say, problems to be solved in order to bypass
code protection) belong to polynomial complexity class. As an example, encryption techniques
are always relatively easy to break since the key space is too limited and allows an exhaustive
search approach. Moreover, encryption algorithms that have been found in known malware
codes are either very naive or do not offer high level of security.

In this paper, we present a new concept about malicious codes combining efficient key
management with high-level security encryption algorithm. Different analysis and experiments have
confirmed the impossibility to study the code, under the assumption that we managed to get a copy
of it. By limiting the code presence and virulence in the computer, we show also how to make this
assumption very unlikely. We illustrate these concepts (proof-of-concept) by presenting from an
algorithmic point of view the most simple example of a new virus family called the BRADLEY

3 Virulence is an index measuring the level of risk for self-reproducing codes. This index, hence the risk itself, is related
to the number of copies of the malware code. For details, see (Filiol, 2003).

217

viruses4. As a main result, we show that the general problem of BRADLEY code analysis is
equivalent to the cryptanalysis of a secure encryption algorithm in the sense that it is exponentially
complex.

This paper is organized as follows. In Section 2, we first define precisely the background and the
known cases where attempts to use cryptography in viral codes have been made. We show why all
this attempts were bound to fail. Section 3 recalls key management techniques presented in (Riordan
& Schneier,1998). In Section 4, we present the generic viral concept5 using strong encryption
combined with optimal key generation and key management. At last, Section 5 proves that
BRADLEY viral code analysis is equivalent to encryption systems cryptanalysis and that it is, in fact,
of exponential complexity. Conclusion will address the problem of fighting against such armoured
malware.

The purpose of this paper is purely academic and draws our attention on the evolution of viral risks.
It shows how the malware risk may evolve very quickly (if not already the case) and cause great
concern among the antiviral community. This is the reason why we will not give any detailed code.
The activity of our laboratory is dedicated to defensive aspects. Our mission consists in identifying
new risks, in testing them in practice and assessing the level of potential threat precisely. All
experiments are conducted in a P4-like laboratory, while remaining strictly within all existing laws.

Definition and Background
Computer virology
The reader is supposed to be familiar with basic definitions about malware (virus, worms, trojan
horses...) and antiviral techniques. We just recall the following starting definition of armoured
codes.

Definition (Armoured codes)

An armoured code is a program which contains instructions whose goal is to delay, complicate or
forbid its own analysis during either its execution or through its disassembly.

The best known example is probably the Whale virus which appeared in september 1990. The virus
did actually represent a very limited risk but it intended obviously to make its analysis very difficult.
Its code contains roughly a dozen of program traps and tricks hampering trace, disassembling and
code analysis: dynamic decryption/encryption, code obfuscation, code nesting...Once activated, the
viral code tries to detect the potential use of a debugger and consequently freezes the keyboard.
Using polymorphism techniques, about 30 different random variants were possible for an infected
file.
What the Whale virus easily managed to cause is not a terrific epidemic but a waste of anti-virus
experts’ time and a nearly three-day delay to eradicate it. Nowadays, the main part of the viral action
is completed during the first thirty minutes after the beginning of the infection (a good example
could be the Slammer worm which appeared in january 2003); therefore, such a delay in code
analysis cannot be acceptable. That is the reason why armouring code techniques must be seriously
taken into account.

These techniques can be divided into different classes, as follows.

4 This name refers to one of the most famous US (armoured) main battle tank.
5 Without loss of generality, we will use the general term “ virus” but everything presented in this paper may apply to
any other malware type: trojans, worms, logical bombs...

218

 Code obfuscation: the aim is to transform a program into another which both is functionally
identical to the original and more difficult to uncompile and reverse engineer. In other
words, the program is written in order to reduce readability and understandability. Three
types of transformations are generally used: lexical transformations (variable name
exchange), control flow transformations (making the program flow more complex by using
code nesting or placebo code) and data flow transformations (action on data structures by
changing storage, encoding, aggregation and order of data). More details can be found in
(Chow et al, 2001 ; Collberg & Thomborson, 2002 ; Flanders, 2003 ; Shah, 2002). In a viral
context, these techniques are of limited interest. Obfuscated codes are generally too slow
and of too large a size to be efficiently used by undetectable malware. Moreover, the results
presented in (Barak et al, 2001) show there is no transformation able to prevent the code of
every program from revealing any other information except the program’s input-output
behaviour.

 Polymorphism: the aim is to make the code change as often as possible by using rewriting
techniques (equivalent functionality but different code). The code analyst has thus to face
up not a single version of the malware code but several versions of it, produced by muta-
tion-like operations; hence the dfficulty to efficiently fight against it. Fortunately, code
analysis becomes always possible in the end and, consequently, all polymorphic techniques
are overcome. A detailed discussion on polymorphism is presented in (Pearce, 2003).

 Encryption: the purpose is both to provide polymorphism (encrypted code change with
every different key) and to prevent code analysis. So far, known techniques suffer from a
lack of efficient key management. The key must be securely available to the malware code
only. Hardware solutions which are generally envisaged to prevent code analysis are not
suitable for mobile codes like virus or worms. Mostly, the key elements are somehow or
other contained in the code itself.

As these first two techniques are concerned, code analysts fortunately will always get to the end of it
since these techniques always produce deterministic results (even if some algorithms may be partly
probabilistic). The only thing is that the analysts need time to study the code behaviour instruction
by instruction. Therefore, this study is likely to be time-greedy and requires many human resources
and much effort dedication. To sum up, none of these techniques are suitable to definitively protect
a code against its analysis.
Encryption is maybe less obviously easy to handle contrary to what experience tells us so far.
Fortunately, only naive or very unsecure encryption methods have been used in known malware
(Ciubotariu, 2003): constant masking (like in earlier macro-viruses for example), rot13 encryption
or other weak encryption systems (as an example, DarkParanoid virus used very simple arithmetic
functions – ADD, SUB, XOR, NEG, NOT, ROL, ROR – as encryption functions).... Besides, weak
key management always allows to recover the key and then to decipher the malware code when
dealing with strong cryptosystems.

Even when combining these techniques (one the most famous example is probably the Zmist virus
(Ferrie & Zsör, 2001), the virus analyst managed to derive all the virus action. All these techniques
are definitively deterministic

Cryptology
The reader is supposed to be familiar with basic concepts of cryptology as well. A detailed
monography about cryptography will be found in (Menezes et al, 1997). We will just recall previous
uses of cryptology inside malware and a few useful concepts we will use throughout this paper.

219

Cryptology has previously been envisaged to provide computer virology with very efficient tools.
On the one hand, cryptographic techniques have recently been considered as a means for optimal
worm propagation (Balepin, 2003). The use of cryptographic hash functions, for instance, is suitable
for speeding up Curious Yellow worm propagation (Wiley, 2002).
On the other hand, the combination of cryptographic techniques with viral technologies led in 1996
to the concept of “Cryptovirology” as presented in (Young & Yung, 1996, 2004). Cryptovirology
consists in applying cryptography tools to malicious codes in order to strengthen, improve or
develop such codes.
Particularly, cryptography appears to be very efficient in designing payloads. Several convincing
examples are presented in (Young & Yung, 1996). The main goal is to make a victim host
dependent upon the virus – i.e. a virus can survive in the host if it makes the host depend in a
critical way on the very presence of the virus itself. These results are mainly obtained with public-
key cryptographic techniques6 combined with limited symmetric cryptography techniques.
Though very efficient, these approaches aim only at protecting the action of the virus (the payload
result) but not the virus itself. In other words, if a copy of a cryptovirus is somehow or other
obtained and analyzed by reverse engineering, none of the cryptographic tools it contains will totally
protect them against its code analysis. Thus, the exact knowledge of the code is likely to allow
antiviral software update and limit/forbid the malware’s action. The main limitation comes from the
fact that cryptovirus as defined by Young and Yung, is not able to manage secret key part in a
suitable and efficient way for that particular purpose.

The basic technique we discuss in this paper can effectively forbid such code analysis and thus,
properly complement all the approaches developed in (Young & Yung, 1996, 2004). Other more
sophisticated techniques are being tested in our laboratory.

Environmental Key Generation

Malware are mobile agents by nature. If they pass through an “insecure network” or environment
(from the malware’s point of view), they may be analyzed (disassembled) so that their code will be
completely accessible to the attacker (the analyst). As previously explained, traditional encryption
systems are dealing with static keys. Actually, the key is present somehow or other in the agent
(hardware or software).

In 1998, B. Schneier and J. Riordan (1998) introduced the notion of environmental key
generation to address this problem. In other words, keying material is constructed from certain
classes of environmental data. Environmental key generation can thus be useful when the sender
wishes to communicate with the receiver such that the receiver could only receive the message if
some environ-mental conditions are true. Environmental key generation can even be used in
circumstances where the receiver is not aware of the specific environmental conditions that the
sender wants his communication to depend on. This latter case corresponds exactly to our malware
code analysis problem. The receiver here is the malware code present in a computer (the
environment) and the sender is malware code author or the target system itself.
The difficulty with building an environmental key generation protocol is that the threat model
assumes that any attacker (the malware code analyst) has total control over the environment. All
information available to the malware program can be found by the attacker as well. All inputs to the
program are supplied by the attacker and the program states themselves are completely determined

6 A cryptovirus is defined as a computer virus that contains and uses a public key.

220

by the attacker during the code analysis. As such, the constructions must resist direct analysis and
dictionary attacks in the form of Cartesian deception, that is to say, in which the attacker tells lies
about the environment.
Riordan and Schneier (1998) discuss several constructions for environmental key generation. To
illustrate their approach, let us consider the following basic construction. Let N be an integer
corresponding to an environmental observation, H a one-way function (typically a hash function),
M the hash of the observation N , the bitwise exclusive-or operator, || the concatenation operator,
R a nonce and K a key. The value M is carried by the agent (the malware code in our case). Hash
function can be used to conduct tests and construct the keys so that examination of the agent does
not reveal the required environmental information. Then possible constructions, among many
others, are:

1• if H(N) = M then let K = N.
2• if H(H(N)) = M then let K = H(N).
3• if H(Ni)= Mi then let K = H(N1,N2,...,Ni).
4• if H(N)= M then let K = H(R1,N) R2.

Let us note that the first construction is used in most of static encrypted password authentication
schemes. The most important feature of each of these constructions is that knowledge of M does not
leak any information on K.
Riordan and Schneier proposed several efficient constructions which provide efficient
environmental key generation protocols using various techniques: thresholding (protocol using the
ideas of cryptographic secret sharing), nesting (action of the mobile agent is ruled by several
environmental keys used in the sequential way), time indexation (part of the environmental date
required to generate the key are based on time)...
Environmental key generation has only been proposed from a theoretical point of view by the
authors. Some aspects still need to be thoroughly tested. Particularly, for most of the constructions
they proposed, the attacker is likely to find the key by observing both the agent and the environment.
The search space for the activation data may always be small enough to allow an exhaustive search
approach. Moreover, by observing mobile agent actions, the attacker may easily determine where
and which kind of data the agent is interested in. That implies that a patient analyst will obtain
information about the agent at the same time this latter is activated by the suitable environmental
data.
We now present a practical and efficient use of environmental key generation in the case of viral
code armouring.

A Generic Armoured Virus: the BRADLEY virus

Let us discuss now the generic family virus named BRADLEY. Without loss of generality, we
choose to describe only a basic but powerful example. Some more complex protocols have been
developed or are currently under study (see Section 6). Two different codes have been developed
and tested:

 a directed but generic virus which aims at specifically infecting a given group a
machine/people (variant A),

 a directed virus dedicated to specifically strike only any given user (variant B).

Minor variants have been tested as well and will be listed later on. The codes have been designed
both for Windows and Unix systems. They successfully managed to bypass antiviral software which

221

all remained silent. Since BRADLEY viruses are only proof-of-concept viruses, we will focus only
on the armoring protocol part. Complete source code is not available. The general structure of the
codes is given in Figure 1 and summarized as follows

Figure 1 : Overall structure of BRADLEY codes

 a decipherment procedure D (the decryptor which purpose is to collect activation data, test
and evaluate them and finally decipher the different encrypted parts of the code;

 a first encrypted part EVP1 with encryption key K1. Once deciphered (under the name
CPV1), this part installs all anti-antiviral functions (passive and active) ;

 a second encrypted part EVP2 with encryption key K2.This part (deciphered as CPV2)
contains the infection functions and the polymorphism procedures. When replicating, the
virus will always and completely change its form (including the decipherment procedure) ;

 a third part EVP3 (optional; deciphered as CPV3) with encryption key K3.It contains the
payload functions (in our case, a simple opening window issuing a infection warning in
order to keep control over the virus).

Note that these three encrypted parts are exactly of the same size in order to give the slightest
information on the underlying code.

Let us now describe the key management protocol. The activation data – in other words the data
required to construct the different keys – are (variant A):

 the local DNS address (e.g. @company.com), denoted α,
 current system time (hours hh only) and date (mm dd), denoted δ,
 a particular data present in the target system(s) (in our case a particular file), denoted ι,
 a particular information under viral code author control, located outside the system (public

channel) but easily accessible to the virus (in our case, a given web page containing a
particular value whose presence is limited in time and related to the value δ); it is denoted
π and obtained from the hash of this information7.

7 One may object that the presence of the webpage url within the procedure D could give a useful information to the
analyst. Since the webpage is under malware author’s control (e.g. located in a rogue state), it is a very dubious hypo-
thesis that the analyst could successfully access to the suitable activation data, especially if the data availability is very

222

For the variant B, data ι is a given public key which is present in a pubring.gpg for example. Thus,
the virus may target a particular user or users communicating through encrypted emails/data with
any given user. The viral code uses the hash function SHA-1 (NIST, 1993) as one-way function
(here denoted H). Then, the environmental key protocol is described as follows:

1. the decipherment procedure D collects the activation data either directly (α, δ and π) or
repeatedly8(ι) and compute a 160-bit value V given by H(H(α δ ι π) ν)
where ν is the first 512 bits of EVP1 (in its encrypted form) ;

2. if V = M where M is the activation value contained in the viral code, then K1= H(α
δ ι π) otherwise the decipherment procedure stops and disinfects the present
system from the whole viral code.

3. D deciphers EVP1 producing VP1= DK1(EVP1) and launches it. Then D is computing
K2= H(K1 ν2) where ν2 is the 512 last bits of VP1.

4. D deciphers EVP2 producing VP2= DK2(EVP2) and launches it. Then D is computing
K3= H(K1 K2 ν3) where ν3 is the 512 last bits of VP2.

5. D deciphers EVP3 producing VP3= DK3(EVP3) and launches it.
6. After virus action is completed, the virus disinfects itself totally.

Some remarks can be made about this protocol:

 from replication to replication, the whole code (including procedure D and value M)
has completely changed every time. This implies a total control of the polymorphic
procedure relatively to the key management protocol by the author of the viral code (i.e
.the evolution of the activation data – in practice only the values δ and/or π) ;

 the purpose of values νi is to make the data span the whole input space (512 bits) ;
 the different parts VPi may be compressed before encryption ;
 the keys K1, K2 and K3 can be made independant by using additional environ-mental

data;
 the autodisinfection may be delayed in order to handle the time and date values in a

less strictly way. In that case, the decipherment procedure D remains active in system
memory.

Other variants have been tested as well, particularly to produce the most optimal code in terms of
size and stealthiness. The most significative variant includes the following features:

 the underlying code is compressed,
 instead of embedding compression and encryption functions within the virus code, this

latter will borrow local resources if present,

limited in time. Nonetheless, we have developed a variant of the basic protocol which is discussed in this section.
Instead of only one data π, we use two external activation data π and π’. Each of them come from two different
webpages. The second webpage’s url is encrypted by means of the key contructed from data α, δ, ι and π. Once
decrypted, the virus gets the second activation data π’ and a secret permutation function P (at the very beginning of
EVP1). Finally, the key K1 is build from data P(α), P(δ), P(ι) and π’ in the same way as key K1 is. In this variant, K1 is
superseded by K1 .

8 “Repeatedly’’ means here that the virus scans any data contained in the system. In our case (a given file), the virus
looks recursively for that data through the tree file system.

223

 that implies that one more activation data is required and repeatedly scanned for exis-
tence or not of compression and encryption softwares.

For all variants we developed, encryption algorithms that have been used are RC4 (Rivest, 1992)
and RC6 (Rivest et al., 1998) while gzip compression has been chosen.

Viral Code Analysis and Cryptanalysis

To evaluate the code analysis complexity, two cases must be considered:

 the analyst has the viral binaries at one’s disposal,
 the analyst does not have them.

The second case is more likely to happen if we consider that, in any case, the virus limits its
presence inside the target system by disinfecting itself from it.

But let us suppose that the analyst, even if it is very unlikely, has managed to get one copy of the
virus binaries. One could object that rootkit or honeypots may be used to trap a copy of the code and
then analyze it. Thus the environmental key could be derived. In our model, this solution remains
impossible in practice to use: we use viral codes fitted for dedicated attacks (wiretapping viruses,
dedicated destruction of data...). To have a significant probability of catching at least a copy of such
a virus, a huge number a machines should be equipped with either rootkits or honeypots. This
approach is thus inapplicable. On the contrary, armoured, generic worms codes would be more easy
to catch since the worm spread generates millions of viral code copies.

So let us show that the environmental key generation protocol presented in section 4 efficiently
forbids code analysis unless a cryptanalysis problem of exponential complexity is solved.

Proposition

The analysis of a code protected by the environmental key generation protocol defined in Section
4 is a problem which has exponential complexity.

Let us now prove this proposition.

Proof. Firstly, let us remark that decipherment procedure D leaks only the following information:

 the activation value V,
 the fact that the virus looks for the system time and date,
 the fact that the virus scans for specific data α, ι and π.

Moreover, the analyst is able to analyze the virus if and only if he knows the secret key K1. It can be
obtained either by direct cryptanalysis or by guessing the exact values of the different activation data
required to generate the good key. This guessing is equivalent to dictionary attacks. The crypt-
analysis approach aims at finding the value K1 such that H(K1 C1) = M where M and C1 are easy to
identify in the decipherment procedure D. A hash function is highly non injective by nature. Thus
it cannot be computationaly inversed in any way (preimage resistance). Consequently, this problem
must be reformulated as a collision search problem (for more details, refer to (Menezes, 1997, chap.
9). In other words, find all pairs of input x and x’ such that H(x) = H(x’). This problem itself is
computationally infeasible. To be more precise finding such a pair requires 2 n/2 operations for n-bit
input values (n = 512 for SHA-1). Since the analyst must absolutely find the exact key K1 (secret

224

key really used to encrypt the viral code), he must beforehand compute all the values x such that H
(x) = M. For a n-bit input, m-bit output hash function, there exists 2 n−m such x in average (2 352 for
SHA-1). Then, to summarize, recovering the key requires 2 n/2 × 2 n−m operations – that is to say 2 (n .

n − m)/2 operations (≈ 2 131,072 for SHA-1).

Let us now consider the dictionary attack approach. It consists in enumerating all the possible values
that might have been used as activation data. Note that, in that particular case, the analyst must
simultaneously consider both the encrypted viral code and the system in which the code
has been found. The analyst can try all the possible data relevant to the system (that is to say α, ι and
δ) over which he has control during the analysis. Unfortunately, data π remains out of his control
and thus he will not be able to determine its exact value. Thus there is no any other more
efficient approach than searching exhaustively for the value α δ ι π. Since at least π will be
chosen randomly by the viral code author, this exhaustive search has complexity 2 n if a n-bit input
hash function has been used (2 512 for SHA-1). All things considered, the overall complexity
of the code analysis is min(2 n, 2 (n.n − m)/2) = 2 n.

Conclusion

The proof-of-concept virus bradley has been designed and discussed to illustrate the fact that effi-
cient armouring is possible. BRADLEY and other efficient viruses of same kind pose the problem of a
threat which so far, is impossible to deal with. The polymorphic nature of such codes, when opti-
mally implemented, forbids any detection based only on the decipherment procedure D. During the
experiments, detection based on behaviour monitoring and analysis has been successfully bypassed
as well.

Permament and direct memory monitoring might be a solution to deal with such efficient armoured
codes (use of rootkit or honeypots). This approach is only of theoretical interest since it requires a
huge number of well-equipped computers in order to catch a viral copy with a significant probabi-
lity of success. Besides, heavy system resources are required and this approach implies to be aware
of this particular threat (efficient code armouring). Current research carried out in our laboratory
aims at proving that even memory management and monitoring can be bypassed. We particularly
designed a far more complex variant directly drawn from the DarkParanoid virus: at any time, only
a single instruction can be found in an unencrypted form in memory. But it requires a far more com-
plex environmental key generation than that simple one presented in Section 4.

Unless a solution is rapidly found to fight against these virus, this study outlines that an isolation of
critical networks and a strict computer security policy is absolutely essential. Moreover, this implies
that the antiviral companies must develop cryptanalysis skills in the very near future, under the as-
sumption that it is possible to obtain a viral code sample and that breakable cryptosystems have
been used.

225

References
Balepin I, (2003). Superworms and Cryptovirology: a Deadly Combination, from

http://wwwcsif.cs.ucdavis.edu/~balepin/new_pubs/worms-cryptovirology.pdf.

Barak B., Goldreich O., Impagliazzo R., Rudich S., Sahai A., Vadhan S, Yang K. (2001), On the
(Im)Possibility of Obfuscation Programs. In Advances in Cryptology, Crypto 2001, Lecture
Notes in Computer Science 2139,1–18, Springer Verlag.

Chow S., Eisen P. Johnson H., Zakharov V.A. (2001), An Approach to the Obfuscation of Control-
Flow of Sequential Computer Programs.In Information Security, ISC 2001, Lecture Notes in
Computer Science 2200, 144–155, Springer Verlag.

Ciubotariu M. (2003), Virus Cryptoanalysis, Virus Bulletin, november 2003. from
http://www.virusbtn.com/magazine/archives/200311/cryptoanalysis.xml

Collberg C.S., Thomborson C. (2002), Watermarking, Tamper-proofing and Obfuscation - Tools for
 Software Protection, IEEE Transactions on Software Engineering, 28(8), August 2002, 735-
746.

Ferrie P., Ször P. (2001), Zmist Opportunities, Virus Bulletin, March 2001, 6–7.

Filiol E. (2003), Les virus informatiques : théorie, pratique et applications, Collection IRIS,
Springer. English translation to be published in March 2005 : Computer Viruses : from
Theory to Applications, Springer Verlag.

Menezes A., van Oorschot P., Vanstone S.A. (1997), Handbook of Applied Cryptography, CRC
Press.

National Institue of Standards and Technology, NIST FIPS PUB 180, Secure Hash Standard, U.S.
Department of Commerce, May 1993.

Pearce S. (2003), Viral Polymorphism, SANS Institute.

Project funded by the Fund for Scientific Research - Flanders (2003), Coordinated Research of
Program Obfuscation, from http://www.elis.regent.be/~banckaer/obfuscation/proposal.html

Riordan J., Schneier B. (1998) Environmental key generation towards clueless agents. In G. Vigna
(Ed.) Mobile Agents and Security Conference’98, Lecture Notes in Computer Science, 15–
24, Springer-Verlag.

Rivest R.L. (1992), The RC4 Encryption Algorithm, RSA Data Security Inc.

Rivest R.L., Robshaw M.J.B. Robshaw, Sidney R. and Yin Y.L. (1998), The RC6 block cipher. In
Proceedings of the 1st AES Candidate Conference, August 1998, Ventura.

Shah P. (2002), Code Obfuscation For Prevention of Malicious Reverse Engineering Attacks, from
http://islab.oregonstate.edu/koc/ece478/02Reports/S2.pdf

Wiley B. (2002), Curious Yellow: The First Coordinated Worm Design, from
http://blanu.net/curious_yellow.html.

226

Young A, Yung M. (1996), Cryptovirology: Extorsion-Based Security Threats an Countermeasures,
IEEE Symposium on Security and Privacy, Oakland, CA, 1996.

Young A, Yung M. (2004), Malicious Cryptography: Exposing Cryptovirology, Wiley & Sons.
See also http://www.cryptovirology.com/

227

